Code: 23ES1103

I B.Tech - I Semester - Regular Examinations - JANUARY 2024

BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common for CE, ME, IT, AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts: Part-A and Part-B.

- 2. Each Part contains:
 - 5 short answer questions. Each Question carries 1 Mark and
 - 3 essay questions with an internal choice from each unit. Each question carries 10 marks.
- 3. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Can superposition theorem be applied to AC and	L2	CO2
	DC circuits?		
1.b)	Define Apparent power and Power factor.	L2	CO2
1.c)	Why is scale of MI instrument calibrated non-	L2	CO1
	linearly?		
1.d)	List the applications of dc motor.	L2	CO1
1.e)	Calculate the electricity bill amount for a month of	L3	CO3
	31 days, if 3 bulbs of 30 watts for 5 hours are used.		
	Given the rate of electricity is 2 Rs. per unit.		

			BL	СО	Max. Marks
	•	UNIT-I			
2	a)	Use the superposition theorem to find v in the circuit shown in Fig. $ \begin{array}{c} 8\Omega \\ 4\Omega \end{array} $	L4	CO3	5 M

	b)	In a series circuit containing pure resistance, a pure inductance and a pure capacitance. Obtain the Voltage and current relationship with phasor diagram and explain how to calculate the average power drawn by the circuit and power	L3	CO2	5 M
		factor?			
		OR	T 4	000	<i></i>
3	a)	An alternating voltage is given by V=230sin314t. Calculate i) frequency, iii) maximum value, iii) average value, iv) RMS value.	L4	CO3	5 M
	b)	State KCL, KVL and illustrate with an example how to calculate the currents and voltage.	L3	CO2	5 M
		UNIT-II			
4	a)	Outline the construction of DC machine.	L3	CO2	5 M
	b)	Describe the construction and working principle of PMMC.	L3	CO2	5 M
		OR			
5	a)	Illustrate the construction and working of an alternator (or) synchronous generator.	L3	CO2	5 M
	b)	Describe the working principle of DC generator with a neat sketch.	L3	CO2	5 M
	UNIT-III				
6	a)	Explain the working principle of Miniature circuit breaker (MCB), its merits and demerits.	L3	CO3	5 M

	b)	Describe the wind power generation.	L3	CO2	5 M	
	OR					
7	a)	Outline the Electric Shock, Causes, Symptoms and safety Precautions to avoid shock.	L3	CO3	5 M	
	b)	Illustrate the working of hydel power plant with a neat sketch.	L3	CO2	5 M	

PART - B

		BL	CO
1.f)	How depletion region is formed in a PN diode?	L3	CO4
1.g)	Covert the binary code 100110 to ($)_{10}$.	L3	CO4
1.h)	Explain the necessity of capacitor in Bridge	L3	CO4
	Rectifier.		
1.i)	Mention the difference between Half wave and	L2	CO5
	Full wave Rectifier.		
1.j)	What is a universal gate?	L2	CO4

			BL	СО	Max. Marks	
		UNIT-I				
8	a)	Outline the CB configuration of BJT	L4	CO5	5 M	
		with the help of input and output				
		characteristics.				
	b)	What is PN junction diode? Explain the	L3	CO4	5 M	
		characteristics of PN junction diode in				
		forward and reverse bias mode.				
	OR					
9	a)	Explain the characteristics of zener diode	L3	CO4	5 M	
		in forward and reverse bias modes.				
	b)	Distinguish between avalanche	L4	CO5	5 M	
		breakdown and zener breakdown.				

		UNIT-II				
10	a)	Describe the working of Public Address system.	L3	CO4	5 M	
	b)	Analyze the working of common emitter (RC coupled) amplifier with its frequency response.	L4	CO5	5 M	
		\mathbf{OR}				
11	a)	Analyze the output waveforms of full wave bridge rectifier with capacitive filter.	L4	CO5	5 M	
	b)	Describe the working of Zener voltage regulator with neat sketch.	L3	CO4	5 M	
		UNIT-III				
12	a)	Discuss the various number system conversions with the following examples. $(10110)_2 = ()_{10}$, $(71263)_8 = ()_{10}$, $(5A8)_{16} = ()_8$	L4	CO5	5 M	
	b)	Covert the following into Excess-3 code. i) 38 ii) 1111 iii) 1011.	L4	CO5	5 M	
	OR					
13	a)	Explain the operation of JK and D-Flip flops with truth table.	L3	CO4	5 M	
	b)	Outline the functionality of XOR and XNOR gates and mention its applications.	L3	CO4	5 M	